—

o

Designs

by Vinay Sharma

L0 B L R R

-
+u
-
-
-
-
|-
Bl
-
V.-
ey
-
ew
-
i—ee
e

s

e % 8 0 8 & 8 35

-—
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-k A A

A
N
% |
%
%
\
N
%
e
y
3
9
X

_.-J“t

PERSPECTIVE

Integrated circuits have changed the way of our life. You name
one gadget and will find the power of silicon which has made
such complex electronic circuits possible.

Integrated circuits, come in many different flavors these days.
User designed chips in particular, CPLDs and FPGAs have
revolutionized the way of system design.

But ASIC remains in lead, due to their speed, power and
performance advantages. Every critical system design is
flagged with ASICs.

To learn the IC design process, techniques & ’critical'
requirement handling, engineers practice for hours and hours
on EDAtools to master know-how of design fundamentals.

Modern ASIC design tools like DSCH and MICROWIND
provides very easy to go-through design flow for CMOS IC
designs. It supports traditional schematic circuit building
methods, layout editing, various analysis & verification
methods, and fab sign off.

But more than rights & lefts of IC design flow, it's the basic
design methodology and circuit building techniques which
leads to success in fabrication. But many of times, engineers
face hurdles during simulation and failures in prototyping.

This article is aimed at explaining the basic design styles and
recommendation for building digital CMOS circuits for ASICs,
along with list of suggestions for building digital circuits which
can be compatible for FPGA prototyping.

This article would certainly leave you in a better position to
make the necessary decisions to embark with confidence on
the route to custom silicon after FPGA prototyping.

Design Tools and need of Prototyping

Modern ASIC techniques give ordinary design engineers the
opportunity to exploit some of today's most advanced
electronic technology. This has been made possible by
powerful software tools which take care of the technology-specific
aspects of integrated circuit design. This high technology inevitably
means that there are many aspects to consider in weighing up the
best path to take. The quality of the tools, how well they are
documented and supported and what they are capable of
producing are in many ways as important as the price and
performance of the finished circuits.

EDA tools like MICROWIND & DSCH, which offers a complete IC
design flow, which starts with schematic building of digital circuits
and then converting into verilog file for compilation in CMOS layout
using MICROWIND layout compiler. We would discuss a little
about the design flows little ahead in article.

Every engineer needs to verify his/her circuit before going for Fab.
sign off; and FPGAs are best available platform for ASIC
prototyping.

A prototype is “A system model to test and develop the product
before its final implementation.”

Field Programmable Gate Arrays (FPGA) are build around using
Look-Up Tables (LUTs) and switch matrix, and are rich in
resources. Advantages like high gate density, flexibility, moderate
speed, etc. gives ideal platform to ASIC designers for prototyping
their designs before going for fabrication of ASIC.

Engineers can use any evaluation kits available in market with
required gate density and I/O features for prototyping of their ASIC
designs.

Design Flow for ASIC & FPGA

MICROWIND, which is an CMOS layout and simulation tool, offers
a complete ASIC design flow, covering all necessary steps of the
design flow. Figure 1 shows the design flow for ASIC along with
FPGA design flow. The figure also shows the FPGA design flow
which can be linked with MICROWIND design flow.

Design Flow

Floorplanning

Place & Route

.bitor jed

Schematic Modeling
Analog & digital Library models

Digital Verilog SPICE
Simulation Extraction Extraction

Y

Verilog File |

FPGA

Functional
Simulation

ModelSim

Verilog Compiler

Technology rule
files

Simulation on
layout.
Transistor level

nanolLambda
Layout Editor

characteristic
" | l simulator.
Programming Design Rule Check
e ‘ A ProTHUMB

Post Layout

Layout Extraction |) SPICE like

l Simulator

Analyzers
Monte Carlo
Global delay analyzer [%
Interconnect statistics
2D Cross section
3D view of layout
Power Analyzer
Cross talk, etc

P
R
- SPICE, CIF ' MICROWIND 3

Reports

Tape out to FAB.
and SPICE
verification

Figure 1: MICROWIND & FPGA Design Flow

DSCH : Digital schematic editor & simulator

DSCH offers lots of library symbols for schematic building, and
hierarchical design features. It can simulate the digital circuits
using pattern based simulator and even can generate SPICE files
for 3 party EDA tool interface. Once the schematic is ready, user
can generate the verilog file for the schematic, containing all the
symbols and I/O definitions.

MICROWIND: CMOS layout editor & simulator

MICROWIND supports complete IC design flow using full-custom
& semi-custom design styles over a P-well process.

Building CMQOS circuit in MICROWIND can be started with custom
drawing of transistors or user can take the verilog file extracted
from the schematic, which can be specified to MICROWIND verilog
compiler and it will generate a complete error free CMOS layout in
few seconds. This layout can be organized for different area sizing
and different options for auto routing.

After drawing the CMOS layout, different checks can be performed
using design rules files. Over the next stage, layout can be verified
for functional checks using inbuilt simulator. User can analyze for
power consumption, FFT, current, delay analysis, eye diagrams,
etc using different plot functions in simulation window.

MICROWIND provides various parametric analysis methods for
CMOS layouts. Power dissipation, temperature analysis, Monte
Carlo, global delay, FEM for interconnect to be named for few.

35

PERSPECTIVE

The FPGAdesign flow accepts inputs like HDL or schematic, but as
schematic file format and library are different for FPGA and DSCH,
which make them incompatible at schematic level. But the verilog
file extracted from DSCH can be specified to the synthesizer of any
FPGAdesign tool.

Once the design is synthesized, it can simulated using Model-sim
for pre-layout simulation. The synthesized netlist is implemented
over atarget FPGA after pin locking of I/Os for target board.

After implementation process, which covers the mapping, place &
route processes, the programming file can be generated for the
target FPGA. There after programming FPGA on board, the design
can be verified for functional working.

Trigger

Clock

Synthesis
nanoLAMDA
MICROWIND

—» Simulate —» Verify
proTHUMB DRC

—>
ecks
MICROWIND MICROWIND

—» Make Verilog File T
DSCH 3 (Structural)

ASIC Way(Transistor level)
Create Schematic —p Simulate
DSCH 3 DSCH 3

lement —

PLD Way

CIF

Bt Recommended Synchronous Pulse generator
Cl undry)

MICROWIND

5. Use clock-enabled flip-flops. Do not use gated clocks.
Synthesizing the gated clocks is dangerous. This
configuration is very sensitive to glitches and simultaneous
switching inputs, and may even delay the clock. Further in
the design process, problems with testability may also

Program

Figure 2 : ASIC and FPGA design flow using MICROWIND

The figure 2 explains the design flow steps which has to be carried
from DSCH to FPGA or custom ASIC.

But many of times engineers while using the verilog file generated
from DSCH have failed while implementing over FPGA. The circuit
was tested, simulated but failed at FPGA prototyping.

Generally there are 3 reasons for the failures;
1) Wrong design style
2)Wrong design style
3) Wrong design style.

As FPGA are not recommended for asynchronous design styles,
even your ASIC can fail for the same reason. Alongwith that
combinational feedback design and gated clocks generally causes
failure of design; and you would keep wondering over the reasons.

We would discuss over few suggestions and guidelines which can
help in building circuits in ethical way. Over the guidelines, we
would take an example which would be designed completely
synchronous way.

Synchronous Design Techniques
Here are some global design guideline for successful
implementation of digital circuits for ASIC and FPGA platforms.

1. Use a single master clock and maintain synchronous flow of
data.

2. Use a single master set or reset. Preferably, use asynchronous
resets because they work independently from the clock. When an
asynchronous reset establishes the initial state, it puts the entire
circuit into a known state and helps make logic simulation and
manufacturing test easier. Keep in mind that CMOS ASIC
technology prefers active-low asynchronous set or reset, but often
FPGAs use active high.

3. Avoid race conditions on de-asserting concurrent set and preset
signals. You cannot predict in simulation how the flip-flop will
behave when both set and reset are de-asserted close in time.

4. Do not use delayed logic or monostable pulse generators, which
relies on delays for its operation (they are unpredictable in ASIC &
FPGA). Instead use synchronous pulse generators which have
known timings and does not generates glitches.

Occur.

dq

-

Clock
En

Clock 1

lock 2

Recommended gating styles and enabling

6. Use clock-enabled flip-flops for clock division. In many FPGA
implementations, ripple clock dividers are popular. Not only can
ripple clock dividers cause problems with EDA tools, the generated
clock will experience a phase delay.

7. Use clock-enabled flip-flops to avoid glitching state decoders.
FPGAs are sometimes tolerant when a state decoder goes through
“11” while changing from “01” to “10.” To ASICs, this causes
implementation-dependent glitches. Using clock-enabled flip-flops
not only avoids glitches but also adds no additional clock delays.

8. Have resets and transition states for Finite State Machines.
Although FSMs are usually synchronous, they still can have issues
during the conversion process. Make sure there are no dead states
because during power-up the FSM can enter an unused state.
Make sure reset is also available on your FSM to make life easier
during simulation and test vector generation.

9. Synchronize all asynchronous inputs in your FSM. When input
data and clock change at the same time, setup and hold time
requirements may cause metastability problems. It is
recommended 2 serial synchronization flip-flops to remove
metastability problems on asynchronous inputs.

10. Avoid latches; use flip-flops instead. Latches cause
complications with static timing and timing-driven layout tools.
Latches are difficult to analyze, and the gate savings between a
latch and a flop are less important with submicron technology.

11. Do not use combinational feedback loops. They would surely
would cause failures while FPGA prototyping. Also setup and hold
times cannot be determined by logic timing analysis or simulation.

36

Magnitudesigns | Issue 01

PERSPECTIVE

12. Avoid the use of three-state logic in the core of your design.
Use muxes instead.

13. Do not use clocks generated from combinational feedback
circuits or logic. When clocks are generated by feeding clocks
through some gates in the FPGA, the frequency will change during
the ASIC conversion. The timing changes because the technology
inherentin the ASIC is different from thatin the FPGA.

The above 13 guidelines to circuit design would always ensure that
you have followed the ethical method of designing circuit for FPGA
and ASIC implementation.

Guideline for Schematics

Many of time while drawing schematics, engineers face hurdles
over management of schematics and land up into problems later.
Here are some basic guidelines to follow for successful
management of schematic and design using DSCH schematic
editor.

1. Use multiple pages or symbols for big and complex circuits, as it
gets difficult to keep track over signals and logic.

2. Use hierarchical approach using symbols of tested blocks.
Engineers can create symbols of tested circuits and use them in
another page.

3. Do not mix analog symbol with digital, as FPGA do not supports
analog symbols used by DSCH.

4. Keep limit on the number of 1/0 ports for schematic symbols,
which can help in ease of interfacing the symbols with other ones.

5. DSCH uses all basic primitive components used in verilog LRM,
except D-Flip-flop and Mux which are added extra in library. So
user has to use components for D flip-flop and Mux while
implementing in FPGA.

Implementation of 8-bit Serial Adder for FPGA Prototyping
using DSCH & MICROWIND

To understand the design flow and safe design techniques, we
design a serial 8-bit adder, which would use a single bit full adder to
perform addition of two 8-bit numbers. The adder would generate
9-bit result after 8 clock cycles. By serial addition we get the benefit
of maximum frequency and re-usage of resources.

Architecture:

The block diagram (figure 3) below shows the implementation
technique of the serial adder.

/ Shift Reg. \

with load Serial-In O/P
A 8".“"D @ Fu/l11¢7tder Parallel Out Register
Load—> [A©) |_ Sum 8-bit 8-bit Sum
7~ Out
Clock D
— Clock
B B'bilD 5 | —I
? B(0) ; 1-bit Car
Load —p Cin — Carry |D ok Outry
Clock D Clock

with load =
Load Controller Block
\ Clock Generates Done Signal —’Done/

Figure 3: Block diagram of serial adder

Working:
The serial adder works with control signals like load, Reset and
Clock. On active high load signal, it registers the two 8-bit numbers

in shift registers, and when load goes low, it starts shifting right the
datain shift registers.
Parallely, a 1-bit adder keeps grabbing bits from the LSBs of both

shift registers and perform addition on those bits along with carry
generated. The sum is stored in another 8-bit shift register which
keep on shifting right from MSB.

Implementation:

Figure 4 shows the implemented circuit of serial adder using
schematic diagram. This circuit works with single clock with
synchronous flow data. The load for shift registers works as enable
using multiplexers at 'D' input. The carry generated from 1-bit
adder is fed back to carry input using a flip-flop, which avoids the
race conditions and ensures the correct operation of circuit.

The clock network is not gated anywhere, circuit is build around
with logic at only 'D" input of the flip-flops.

Shift register O/P Register

s Done generation

Figure 4: Serial Adder implemented in DSCH

Eventually after 8-clock cycles when the addition is performed, the
controller generates a done signal, which indicated the end of
addition operation and also stores the results in O/P registers for
user access.

Results:

The resources consumed by Serial Adder on FPGA are as follows:
Implementation Results from Xilinx ISE for XC2S200 FPGA
Number of Slice Flip Flops :31outof4,704
Number of4 input LUTs :33 outof4,704

Number of bonded IOBs :28 outof 140
IOB Flip Flops :9
Clock Frequency :216.6 MHz

The serial adder utilizes following resources when implemented on
silicon:

PMOS Transistors :354
NMOS Transistors 1434
Surface area : 2682.8 um’(45nm technology)

:16012.9 um?(0.12um technology)
:1.8 GHz (45nm technology)
:1.2 GHz (0.12um technology)

Clock Speed

Synchronous way of design always safe guards the circuits from
glitches and timing errors.

We saw an illustrated way of integrating design flows for FPGA and
ASIC which can be easily achieved using DSCH + MICROWIND +
ISE. Only engineers have to follow few guidelines for successful
implementation of circuits.

37

