e
o
Iy '30 e m o
= 4
. E N IY]
TR) n
- o
. i - | 1
: EH »| =
- ¢ 3 9 L Bl : T B3
= n ('*’_._"-..——: — N
— - & 3 o0
uy B
N L
L-: " - e 2 T
_— : ~ b o
i ‘- LB ¢« T
JP% = * ety)
i' [G U
WA b N e R L
e H T
+ ' AN < J
50 e 7 =
papesta e LR T ™ [Il
[T Raidl it -ﬂ { 77_1_13 o= N 5
e ('L e .\‘\ | "\{‘ ¥ S A
B ¥ = | o g
g N I
- P e : T
e T ‘ [1 ¥
¥ . - 4

@ ==
-

7 ~ 3

T ﬁ4

e
"®~s . — I‘ ‘I‘Q "
= Ze T flI] o

= .

S8 =L N
=3 - <
& .:__|

1

e’

g
=
il
[%
Pe.
o
]
A
- j :.r =
'.M_". 1_6. f‘ :\ !
.»‘)? k- !
o vl b !
l"“,‘l

g L

;,‘f\.k ;

. K(i) = Permute(-
e

atalnBusy = 0
W E WE =
ol

A

e}

-

[}

L L]
gl
y

> 4
I

Jonathan: Saul
Director,

System Crafter Ltd., UK

PERSPECTIVE

SystemCrafter provides a simple route for high-level FPGA
design

For many years people have been using C or C++ as a starting
point for developing their hardware and systems. This is because
these languages are widely known, quick to write, and give an
executable specification, which allows very fast simulation. C or
C++ versions of standard algorithms are widely available, which
allows easy reuse of legacy and publicly available code. For
system-level design, they allow hardware and software
descriptions to be described in a single framework.

However there have been two drawbacks. Firstly, C and C++ don't
support the description of some important hardware concepts,
such as timing and concurrency. This has led to the development of
proprietary C-like languages, which haven't been popular because
they tied the user to a single software supplier. Secondly, C and
C++ have to be translated manually to a hardware description
language, such as VHDL or Verilog, for hardware implementation.
This step requires specialist resources, is time-consuming, and
often introduces errors that are difficult to find.

The first of these problems was solved by the development of
SystemC, which is now a widely-accepted industry standard that
adds hardware concepts to C++.

The second of these problems is solved by the development of
tools like SystemCrafter SC, which allows SystemC descriptions to
be automatically translated to VHDL or Verilog.

This article illustrate the use of SystemCrafter SC and SystemC by
describing an implementation of the popular DES encryption
algorithm. It first describes SystemC, SystemCrafter and DES.
Then itillustrates the use of SystemCrafter in a typical design flow,
using DES as an example.

SystemC

SystemC provides an industry standard means of modeling and
verifying hardware and systems using standard software
compilers. All the material required to simulate SystemC using a
standard C++ compiler, such as Microsoft Visual C++ or GNU
GCC, can be downloaded free of charge from the SystemC
website (www.systemc.org)

SystemC consists of a set of class libraries for C++ that describe
hardware constructs and concepts. This means that you can
develop cycle-accurate models of hardware, software and
interfaces, which can be simulated and debugged within your
existing C++ development environment.

SystemC allows the initial design, debugging and refinement to be
performed using the same test benches, which eliminates
translation errors, and allows fast, easy verification.

Since SystemC uses standard C++, the productivity benefits
offered to software engineers for years are now available to
hardware and system designers. SystemC is more compact than
VHDL or Verilog and, as a result, is faster to write and more
maintainable and readable. It can be compiled into a fast,
executable specification.

SystemCrafter SC

SystemC was originally developed as a system modeling and
verification language, and still required manual translation to a
hardware description language to produce hardware.

SystemCrafter SC automates this process, by quickly synthesizing
SystemC to RTL VHDL or Verilog. It will also generate a SystemC
description of the synthesized circuit, which can be used to verify
the synthesized code using your existing test harness.

SystemCrafter SC gives the designer control of the critical steps of
scheduling (clock cycle allocation) and allocation (hardware

reuse). Thus, the results are always predictable, controllable and
match the designer's expectations.

SystemCrafter SC allows you to develop, refine, debug and
synthesize hardware and systems within your existing C++
compiler's development environment. You can run fast,
executable SystemC specifications to verify your design. You can
configure your compiler so that SystemCrafter SC is
automatically run when you specify that you want to generate
hardware.

SystemCrafter SC can be used for:

» Synthesizing SystemC to Hardware

» System-level Design and Co-design

» Custom FPGA Co-processing and Hardware Acceleration

The DES Algorithm

The Data Encryption Standard (DES) algorithm encodes data
using a 64 bit key. Refer Figure 1. The same 64 bit key is required
to decode the data at the receiving end. Itis a well-proven, highly
secure means of transmitting sensitive data. DES is particularly
suitable for hardware implementation as it requires only simple
operations such as bit permutation (which is particularly
expensive in software), exclusive OR and table look up
operations.

Permute

Left Shift

Left Shift

Figure 1: Circuit for pre-calculating the DES key values.

19

PERSPECTIVE

An implementation of DES consists of two stages. During the first
stage, 16 intermediate values are pre-computed based on the
initial key. Figure 1 shows the calculations used during this phase.
These 16 values are fixed for a particular key value and may be
reused for many blocks of data. To calculate the key values, the
bits of the initial key are first re-ordered. This first permutation also
drops the 8 bits in the key used for parity checking resulting in 56
active key bits. Each intermediate key value is then computed by
first splitting the output of the previous stage into two halves of 28
bits each and shifting each half left by 1 or 2 bits depending on the
iteration number. The shifted value is permuted once again
resulting in a 48 bit value for use during the encryption/decryption
stage.

The second computation stage involves 16 iterations of a circuit
where each iteration uses one of the pre-computed key values.
Figure 2 shows the calculations used during this phase.
Encryption is based on 64 bit 'blocks' of data with 64 bits of input
data encoded for each group of 16 iterations resulting in 64 bits of
output data. The 64 bits of input data are first re-ordered by a
permutation. The data is then split into two halves of 32 bits each.
At each stage, 32 bits of data are permuted and expanded to 48
bits before being exclusive OR-ed with one of the 48 bit key values
from stage 1. The result of the exclusive OR is split into eight 6 bit

Permute

. -
~ 0,

Permute

Permute

;V
L% 2
e,

e” &

Further iterations

Permute

Figure 2: Circuit for
encoding/decoding
data.

values which are used to look up eight 4 bit values from eight
different look up tables (called S-blocks). The outputs of the look
up operations are permuted once again and exclusive OR-ed with
the other half of the input data. The two halves of the data are then
reversed before starting the nextiteration.

Decryption consists of using exactly the same stage 2
calculations but with the 16 key values from the first stage used in
reverse order.

A full description of the algorithm can be found at
www.systemcrafter.com.

Design Flow

The design flow using SystemC and SystemCrafter is shown in
Figure 3. An important benefit of this design flow is that the
development of the initial SystemC description, partitioning, and
system- and gate-level simulation can all be carried out in the
same framework. In this case Microsoft's Visual C++ design
environmentwas used.

The target platform was the ZestSC1, an FPGA board containing
a Xilinx Spartan-3 FPGA and some SRAM, communicating with a
host PC via a USB interface.

Hardware/Software Partitioning

The first step is to write an initial system-level description. It may
be appropriate to decide on a hardware/software partitioning at
this point, or to defer this decision until a working system-level
description has been written.

In the case of DES the hardware/software partitioning decision is
easy and intuitive. The core of the algorithm involves high-
bandwidth computation using operators unsuitable for software
implementation, and so these will be implemented on the FPGA.

A hardware description of the DES core was written in SystemC,
using Microsoft's Visual C++ design environment. The use of
Visual C++ allowed the programmer to use an environment that
he was familiar with. Calls to SystemCrafter are made as “Custom
Build Steps”, which allows simulation and synthesis from within
the Visual C++ design environment. Alternatively the user could
have used the SystemCrafter GUl to manage his project.

The look-up tables were implemented as CoreGen modules, to
show how complex third party IP blocks can be used in a
SystemCrafter design. SystemCrafter treats SystemC modules
with missing method definitions as black boxes, which allows IP
blocks written in other languages to be used. A model of the look-
up tables was written in SystemC for use during simulation.

Simulation and Synthesis
The SystemCrafter flow allows the design to be simulated at a
number of levels.

First a test harness was written, which fed standard DES test
patterns through the hardware engine and displayed the results
on the console.

Two configurations were specified in Visual C++: System-level
and Gate-level.

The System-level configuration was used first. This compiles the
original SystemC design, to produce a simulation model at the
behavioral-level. This model is an executable program that can be
run to produce a behavioral-level simulation of the DES engine.

Once the behavioral model produced the desired results, the
second configuration was used. This automatically calls
SystemCrafter synthesis as part of the build process, which
produces two descriptions of the synthesized circuit: a SystemC
description, and a VHDL description.

As part of the build process the gate-level SystemC description is
compiled into a gate-level simulation model, which can be run to
produce a gate-level simulation of the DES engine. This verifies
that the synthesis process is correct. The VHDL description was
then simulated using ModelSim.

To Software and HDL
Implementation Paths

System Description

SystemC Partial
Implementation

Behavioral
Verification

SystemCrafter SC C++ Test Bench

Gate Level
Description

Gate Level
Verification

SystemCrafter SC

VHDL Behavioral

VHDL Description Verification

VHDL Synthesis Tool VHDL Test Bench

. VHDL Gate Level
Netlist Verification

Place and Route

Figure 3: SystemC design flow
FPGA with SystemCerafter.

Implementation

20

Magnitudesigns | Issue2

PERSPECTIVE

Implementation
When KeySet is high for a cycle, the value of Keyln is used to pre-
compute the key values which are stored ina RAM table.

When DatalnWE is high, Dataln is used as the next 64 bit input
data block. DatalnBusy will be high during execution of the
encryption/decryption loop to hold off further data.

When DataOutWE is high, the encrypted or decrypted data
appears on the DataOut port. DataOutBusy can be held high to
hold off the new resuilt.

The pseudo code for the design is shown in Figure 4.

Figure 5 shows the structure of the final design. The look up tables
are implemented as CoreGen modules to illustrate the process of
including complex IP blocks in a SystemCrafter design.
SystemCrafter treats SystemC modules with missing method
definitions as black boxes and this is how the SBlock class is
defined in the DES source code.

During behavioural simulation, it is important that the correct
behaviour of the CoreGen blocks is simulated. For this reason, a
SystemC model of the look up tables is provided (SBlockn::LUT()
method) which is removed for the compilation to hardware. Using
these techniques, models of any IP blocks can be created to verify
behaviour atan early stage.

The VHDL files produced by SystemCrafter is the core of the
implementation. Support modules supplied with the board helped
with the interface between the PC and ZestSC1 FPGAboard.

A VHDL module simplifies the connection to the USB bus on
the board. A small piece of VHDL was written to connect the 16
bit USB bus to the 64 bit DES input and output ports.

The complete DES project was then compiled using the standard
Xilinx tools (XST for the VHDL and CoreGen for the ROMs,
followed by place and route) to generate an FPGA configuration
file. The device driver and C library contained in the ZestSC1
support package were then used to develop a simple GUI that

loop forever
if KeySet = 1
DatalnBusy = 1
K(0) = Permute(Keyln)
loop fori=1to 16
K(i) = K(i-1) << shift amount
K(i) = Permute(K(i-1))
end loop
DatalnBusy = 0
else if DatalInWE = 1
DatalnBusy = 1
D(0) = Permute(Dataln)
loop fori=1to 16
E = Permute(D(i-1))
A = E xor K(i)
S =LUT(A)
P = Permute(S)
D(i) = Concat(Range(D(i-1), 31,
0), P xor Range(D(i-1), 63, 32))
end loop
wait for DataOutBusy = 0
DataOut = D(16)
DataOutWE = 1 for one cycle
DataOutBusy = 0
end if
end loop
Figure 4: Pseudo code for DES implementation.

Top level design

USB Interface DESEncrypt

DESEngine . SPlock0
Sblock1
Sblock2

Sblock3

Sblock4
Sblock5
Sblock6
Sblock?7

. SystemC . Core Gen

Figure 5: FPGA implementation of DES.

configures the board with the FPGA configuration file. It then
loads an image, sends it to ZestSC1 over the USB bus, and
displays the encrypted result. The data can then be decrypted to
retrieve the original image.

VHDL

Asample output from the GUI is shown in Figure 6.

SystemCrafter DES Demo

Key

| 1234567812345678

Encrypt

load | Load Save swe |

Figure 6: DES Image Encryption GUI.

Conclusion
SystemCrafter can be used to provide a simple route from
system-level design down to Xilinx FPGAs.

It is suitable for programmers, scientists, systems engineers and
hardware engineers. It enables developing hardware to be
viewed as a higher level activity than writing an HDL, and allows
the user to focus on the algorithm, rather than the details of the
implementation. This can improve time to market, reduce design
risk, and allow programmers and scientists to design complex
systems withoutlearning HDLs or electronics.

Both SystemCrafter SC and the DES implementation, including
working source files and a more detailed description can be
downloaded from the SystemCrafter website
(www.systemcrafter.com).

21

